A Hierarchical Hybrid Evolutionary Computation for Continuous Function Optimization
نویسندگان
چکیده
In this paper, we propose a hybrid master/slave approach to optimization problems on the basis of estimation of distribution algorithms (EDAs) and genetic algorithms (GAs). The master process estimates the probability distribution of the search space on the basis of the non-dependency model at each iteration and sends probability vectors to the slaves. The slaves use the vectors to generate a new initial population for their GA operations. We employ the simplest probability models and we compensate for the reduced accuracy problems by applying GAs to the solutions sampled using the simplest model. Moreover, our method can be incorporated with strategy research, and it easily can be parallelized. Lastly, we conduct experiments to verify the effectiveness of our method.
منابع مشابه
Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملGradient-based Ant Colony Optimization for Continuous Spaces
A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...
متن کاملHybrid Evolutionary Computation for Continuous Optimization
Hybrid optimization algorithms have gained popularity as it has become apparent there cannot be a universal optimization strategy which is globally more beneficial than any other. Despite their popularity, hybridization frameworks require more detailed categorization regarding: the nature of the problem domain, the constituent algorithms, the coupling schema and the intended area of application...
متن کاملGradient-based Ant Colony Optimization for Continuous Spaces
A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJNGC
دوره 3 شماره
صفحات -
تاریخ انتشار 2012